martes, 18 de noviembre de 2008

Analisis estadistico

1. El mayor productor de bioetanol es China
SI 30%
NO 70%


2. El biodesel tambien es llamado etanol
F 70%
V 30%
3. El bioetanol se obtiene apartir de:
A) Aceite, vegetal, jatrofa
B) Canola, soja
C) Azucar, remolacha y cebada
D) Las frutas



4. Los biocombustibles mas usados son el bioetanol y el biodesel
SI 55%
NO 45%











esta es solo una parte de la preguntas realizadas a personas que opinaron acerca de los biocombustibles


martes, 11 de noviembre de 2008

LOS BIOCOMBUSTIBLES Y LA ESCASES DE ALIMENTOS

LOS BIOCOMBUSTIBLES Y LA ESCASES DE ALIMENTOS






PRESENTADO POR:
ANA BOLENA VELASQUEZ VILLAMARIN
GRADO 1103 JM


PRESENTADO A LOS PROFESORES:
LIDA CORTES Y WILSON SALAZAR MOLINA



IED SAN FRANCISCO 1 LA CASONA
AREA DE QUIMICA E INFORMATICA
BOGOTA D.C.
2008












JUSTIFICACION

Este trabajo se hizo con el fin dar darle a conocer a las personas la importancia que tienen los biocombustibles para nuestro bienestar, y para controlar la escases de alimentos que estamos afrontando en estos tiempos en el mundo.

También conocer las cifras de hambre que hay en el mundo y saber que estanos haciendo para combatirla.


OBJETIVO GENERAL


1. Conocer la importancia de los biocombustibles y la escases de alimentos


OBJETIVOS ESPECIFICOS

1. Saber la importancia que tienen los diferentes tipos de combustibles
2. Conocer el primer tipo de combustible que se utilizo en el mundo
3. Saber que podemos hacer para combatir el hambre en el mundo




LOS BIOCOMBUSTIBLES

El biocombustible es el término con el cual se denomina a cualquier tipo de combustible que derive de la biomasa - organismos recientemente vivos o sus desechos metabólicos, tales como el estiércol de la vaca.

Los combustibles de origen biológico pueden sustituir parte del consumo en combustibles fósiles tradicionales, como el petróleo o el carbón.

Los biocombustibles más usados y desarrollados son el bioetanol y el biodiésel.

El etanol puede utilizarse como combustible para automóviles sin mezclar o mezclado con gasolina en cantidades variables para reducir el consumo de derivados del petróleo. El combustible resultante se conoce como gasohol (en algunos países, "alconafta"). Dos mezclas comunes son E10 y E85, que contienen el etanol al 10% y al 85%, respectivamente.

El etanol también se utiliza cada vez más como añadido para oxigenar la gasolina estándar, como reemplazo para el metil tert-butil éter (MTBE). Este último es responsable de una considerable contaminación del suelo y del agua subterránea.

También puede utilizarse como combustible en las celdas de combustible.

El etanol que proviene de los campos de cosechas (bioetanol) se perfila como un recurso energético potencialmente sostenible que puede ofrecer ventajas medioambientales y económicas a largo plazo en contraposición a los combustibles fósiles. Se obtiene fácilmente del azúcar o del almidón en cosechas de maíz y caña de azúcar, por ejemplo. Sin embargo, los actuales métodos de producción de bio-etanol utilizan una cantidad significativa de energía comparada al valor de la energía del combustible producido. Por esta razón, no es factible sustituir enteramente el consumo actual de combustibles fósiles por bio-etanol.

El etanol como combustible

Contrariamente a lo que suele creerse, en la combustión, el etanol produce más gases de efecto invernadero que la gasolina. Por cada gigajulio (GJ) obtenido del etanol puro al arder, produce 71,35 kg de dióxido de carbono. Si se considera la gasolina como octano puro, la producción sería de 67,05 kilogramos por gigajulio (GJ): a igualdad de energía producida en la combustión, el etanol produce un 6% más de dióxido de carbono que la gasolina, lo cual puede poner en duda la idea, de que es más ecológico.

Para buscar una ventaja ambiental en este combustible, habría que recurrir al dióxido de la atmósfera absorbido durante el crecimiento de la planta que produce el etanol (que no se volvería a emitir si no se quemara), así como en los procesos de transformación que sufren las materias primas antes de ser un combustible utilizable o también demostrando que los motores que utilicen etanol tengan un rendimiento mayor que los de gasolina (por lo dicho, bastaría que fuesen un 6% más eficientes).

Sin entrar en cifras, a menudo muy discutidas (véase Balance de energía), desde un punto de vista a largo plazo no se debe despreciar el hecho de que sea un combustible renovable, y por lo tanto inagotable, al contrario que el petróleo. Este punto de vista resulta quizá un poco superficial, puesto que había que calcular la cantidad de tierras que habría que labrar para conseguir suplir las inmensas cantidades de combustible que requiere, y requerirá, la actividad humana.

Fuentes y proceso de fabricación

Fermentación

Desde la antigüedad se obtiene el etanol por fermentación anaeróbica de azúcares con levadura en solución acuosa y posterior destilación. La aplicación principal tradicional ha sido la producción de bebidas alcohólicas.
Hoy en día se utilizan tres tipos de materias primas para la producción a gran escala de etanol de origen biológico (bioetanol):
Sustancias con alto contenido de sacarosa
caña de azúcar
remolacha
melazas
sorgo dulce

Sustancias con alto contenido de almidón maiz patata y yuca

Sustancias con alto contenido de celulosa
madera
residuos agrícolas
El proceso a partir de almidón es más complejo que a partir de sacarosa porque el almidón debe ser hidrolizado previamente para convertirlos en azúcares. Para ello se mezcla el vegetal triturado con agua y con una enzima (o en su lugar con ácido) y se calienta la papilla obtenida a 120 - 150ºC. Luego se cuela la masa, en un proceso llamado escarificación, y se envía a los reactores de fermentación.

A partir de celulosa es aun más complejo porque primero hay que pre-tratar la materia vegetal para que la celulosa pueda ser luego atacada por las enzimas hidrolizantes. El pre-tratamiento puede consistir en una combinación de trituración, pirólisis y ataque con ácidos y otras sustancias. Esto es uno de los factores que explican por qué los rendimientos en etanol son altos para la caña de azúcar, mediocres para el maíz y bajos para la madera.

La fermentación de los azúcares es llevada a cabo por microorganismos (levaduras o bacterias) y produce etanol así como grandes cantidades de CO2.

Además produce otros compuestos oxigenados indeseables como el metanol, alcoholes superiores, ácidos y aldehídos. Típicamente la fermentación requiere unas 48 horas.








Campo de maíz en Sudáfrica

En la actualidad tres países han desarrollado programas significativos para la fabricación de bioetanol como combustible: Estados Unidos (a partir de maíz), Brasil y Colombia (ambos a partir de caña de azúcar). El etanol se puede producir a partir de otros tipos de cultivos, como remolachas, zahína, mijo perenne, cebada, cáñamo, kenaf, patatas, mandioca y girasol. También puede extraerse de múltiples tipos de celulosa "no útil". Esta producción a gran escala de alcohol agrícola para utilizarlo como combustible requiere importantes cantidades de tierra cultivable con agua y suelos fértiles.





Cosecha de caña de azúcar. Gracias en parte al uso de etanol, Brasil ha reducido su dependencia de petróleo extranjero

En cambio es menos atractiva para las regiones con alta densidad de población e industrializadas como Europa occidental, o para las regiones que al roturar nuevas tierras para labranza disminuyen las dedicadas a recursos naturales importantes como las selvas lluviosas. Se pueden obtener cantidades más reducidas de alcohol combustible de los tallos, de elementos reciclados, de la paja, de las mazorcas de maíz, y de productos sobrantes de las granjas que ahora se utilizan para hacer piensos, fertilizantes, o que se utilizan como combustibles de plantas de energía eléctrica. De hecho, EEUU podría conseguir todo el etanol que necesita usando una mezcla de, por ejemplo, los tallos (parte no aprovechada) del maíz y de la planta de maíz, sin roturar más tierras de labrantío (sin embargo habría que cultivar más tierra para substituir las partes de la planta, usadas por muchos granjeros como fuente barata, confiable y limpia de piensos o fertilizantes).

Purificación

El método más antiguo para separar el etanol del agua es la destilación simple, pero la pureza está limitada a un 95-96% debido a la formación de un azeótropo de agua-etanol de bajo punto de ebullición. En el transcurso de la destilación hay que desechar la primera fracción que contiene principalmente metanol, formado en reacciones secundarias. Aún hoy, éste es el único método admitido para obtener etanol para el consumo humano.

Para poder utilizar el etanol como combustible mezclándolo con gasolina, hay que eliminar el agua hasta alcanzar una pureza del 99,5 al 99,9%. El valor exacto depende de la temperatura, que determina cuándo ocurre la separación entre las fases agua e hidrocarburos.

Para obtener etanol libre de agua se aplica la destilación aceotrópica en una mezcla con benceno o ciclo hexano. De estas mezclas se destila a temperaturas más bajas el azeótropo, formado por el disolvente auxiliar con el agua, mientras que el etanol se queda retenido. Otro método de purificación muy utilizado actualmente es la adsorción física mediante tamices moleculares.

A escala de laboratorio también se pueden utilizar desecantes como el magnesio, que reacciona con el agua formando hidrógeno y oxido de magnesio.

Etanol e hidrógeno


El hidrógeno se está analizando como combustible alternativo, creando la economía del hidrógeno. Dado que el hidrógeno en su estado gaseoso ocupa un volumen muy grande comparado a otros combustibles, la logística se convierte en un difícil problema. Una posible solución es utilizar el etanol para transportar el hidrógeno (en la molécula de etanol), para después liberar el hidrógeno del carbono asociado en un reformador de hidrógeno y así alimentar una celda de combustible con el hidrógeno liberado. Alternativamente, algunas celdas de combustible (Direct Ethanol Fuel Cell DEFC) se pueden alimentar directamente con etanol o metanol. A fecha de 2005, las células de combustible pueden procesar el metanol más eficientemente que el etanol.

A principios de 2004, los investigadores de la
universidad de Minnesota anunciaron la invención de un reactor simple de etanol, con el que se alimentaria, y a través de un apilado de catalizadores, emitiría en la salida hidrógeno que podría ser utilizado en las celdas de combustible. El dispositivo utiliza un catalizador del rodio-cerio para la reacción inicial, lo cual ocurre a una temperatura de cerca de 700 °C. Esta reacción inicial mezcla el etanol, el vapor de agua, y el oxígeno y produce considerables cantidades de hidrógeno. Desafortunadamente, también da lugar a la formación de monóxido de carbono, una sustancia que obstruye la mayoría de las células de combustible y se debe pasar a través de otro catalizador en el que se convertirá en dióxido de carbono. (El monóxido de carbono inodoro, descolorido, e insípido también representa un peligro tóxico significativo si se escapa a través de la celda de combustible en el extractor, o si escapa en los conductos entre las secciones catalíticas se escapan.) los últimos productos del dispositivo son gas de hidrógeno, casi 50%, y nitrógeno, 30%, con el 20% restante que es sobre todo dióxido de carbono. El nitrógeno y el dióxido de carbono son bastante inertes cuando la mezcla se bombea en una célula de combustible apropiada. El dióxido de carbono se lanza nuevamente dentro de la atmósfera, donde puede ser reabsorbido por la planta de la que se extrae el etanol cerrando así el ciclo. No se lanza nada de dióxido de carbono neto, aunque se podría discutir que mientras está en la atmósfera, actúa como gas invernadero.

Balance de energía

Para que el etanol contribuya perceptiblemente a las necesidades de combustible para el transporte, necesitaría tener un
balance energético neto positivo. Para evaluar la energía neta del etanol hay que considerar cuatro variables: la cantidad de energía contenida en el producto final del etanol, la cantidad de energía consumida directamente para hacer el etanol (tal como el diesel usado en tractores), la calidad del etanol que resultaba comparado a la calidad de la gasolina refinada y la energía consumida indirectamente (para hacer la planta de proceso de etanol, etc). Aunque es un asunto que crea discusión, algunas investigaciones que hagan caso de la calidad de la energía sugieren que el proceso toma tanta o más energía combustible fósil (en las formas de gas diesel, natural y de carbón) para crear una cantidad equivalente de energía bajo la forma de etanol. Es decir la energía necesitada para funcionar los tractores, para producir el fertilizante, para procesar el etanol, y la energía asociada al desgaste y al rasgón en todo el equipo usado en el proceso (conocido como amortización del activo por los economistas) puede ser mayor que la energía derivada del etanol al quemarse. Se suelen citar dos defectos de esta argumentación como respuesta: no se hace caso la calidad de la energía, cuyos efectos económicos son importantes. Los efectos económicos principales de la comparación de la calidad de la energía son los costes de la limpieza de contaminación del suelo que provienen derrames de gasolina al ambiente y costes médicos de la contaminación atmosférica resultado de la refinación y de la gasolina quemada. y la inclusión del desarrollo de las plantas del etanol inculca un prejuicio contra ese producto basado estrictamente sobre la pre-existencia de la capacidad de refinación de la gasolina. La decisión última se debería fundar sobre razonamientos económicos y sociales a largo plazo. El primer argumento, sin embargo, sigue debatiéndose. No tiene sentido quemar 1 litro de etanol si requiere quemar 2 litros de gasolina (o incluso de etanol) para crear ese litro.

La mayor parte de la discusión científica actual en lo que al etanol se refiere gira actualmente alrededor de las aplicaciones en las fronteras del sistema. Esto se refiere a lo completo que pueda ser el esquema de entradas y salidas de energía. Se discute si se deben incluir temas como la energía requerida para alimentar a la gente que cuida y procesa el maíz, para levantar y reparar las cercas de la granja, incluso la cantidad de energía que consume un tractor. Además, no hay acuerdo en qué clase de valor dar para el resto del maíz (como el tallo por ejemplo), lo que se conoce comúnmente como coproducto. Algunos estudios propugnan que es mejor dejarlo en el campo para proteger el suelo contra la
erosión y para agregar materia orgánica. Mientras que otros queman el coproducto para accionar la planta del etanol, pero no evitan la erosión del suelo que resulta (lo cual requeriría más energía en forma de fertilizante). Dependiendo del estudio, la energía neta varía de 0,7 a 1,5 unidades de etanol por unidad de energía de combustible fósil consumida. En comparación si el combustible fósil utilizado para extraer etanol se hubiese utilizado para extraer petróleo y gas se hubiesen llenado 15 unidades de gasolina, que es un orden de magnitud mayor.

La extracción no es igual que la producción. Cada litro de petróleo extraído es un litro de petróleo agotado. Para comparar el balance energético de la producción de la gasolina a la producción de etanol, debe calcularse también la energía requerida para producir el petróleo de la atmósfera y para meterlo nuevamente dentro de la tierra, un proceso que haría que la eficiencia de la producción de la gasolina fuese fraccionaria comparada a la del etanol. Se calcula que se necesita un balance energético de 200 %, o 2 unidades de etanol por unidad de combustible fósil invertida, antes de que la producción en masa del etanol llegue a ser económicamente factible.



Efectos ambientales

Contaminación del aire

El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Para cumplir la normativa de emisiones se requiere la adición de oxigeno para reducir emisiones del monóxido de carbono. El aditivo metil tert-butil éter actualmente se está eliminado debido a la contaminación del agua subterránea, por lo tanto el etanol se convierte en un atractivo aditivo alternativo. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina, lanzando así más compuestos orgánicos volátiles (VOCs Volatil Organic Compounds).

El uso de etanol puro en lugar de gasolina en un vehículo aumenta las emisiones totales del dióxido de carbono, por cada kilómetro, en un 6%. Si de algún modo se reduce la emisión total, pudiera deberse al proceso agrícola que se necesita para crear el biofuel que produce ciertas emisiones del CO.

Considerando el potencial del etanol para reducir la contaminación, es igualmente importante considerar el potencial de contaminación del medio ambiente que provenga de la fabricación del etanol. En 2002, la supervisión de las plantas del etanol reveló que lanzaron VOCs en una tasa mucho más alta que la que se había divulgado anteriormente. Se producen VOCs cuando el puré fermentado de maíz se seca para venderlo como suplemento para la alimentación del ganado. Se pueden unir a las plantas oxidantes termales u oxidantes catalíticos para consumir los gases peligrosos.

Efectos del etanol en la agricultura

Los ecologistas han hecho algunas objeciones a muchas prácticas agrícolas modernas, incluyendo algunas prácticas útiles para hacer el bioetanol más competitivo. Los efectos sobre los campos afectarían negativamente a la producción para consumo alimentario de la población.

Recurso renovable

El etanol puede convertirse en una opción interesante a medida que la humanidad se acerque al fin de otras fuentes como el petróleo o el gas natural.

De todas formas para que pueda considerárselo un recurso realmente renovable el balance energético debe ser positivo. Es importante que en los debates aún abiertos las versiones pesimistas advierten del uso de pesticidas y fertilizantes. De todas formas la cantidad de pesticidas utilizados varía mucho de si el maíz va dirigido a las personas o a los motores, ya que es en la primera opción en el que se hace un uso más intenso de los pesticidas.
Plomo

En el pasado, cuando los granjeros destilaban su propio etanol, utilizaban a veces los
radiadores como parte del alambique. Los radiadores contenían a menudo plomo, que contaminaba el etanol. El plomo pasaba al aire al quemarse el combustible contaminado, generando problemas de salud (saturnismo). Sin embargo ésta era una fuente de plomo menos importante que el tetraetilo de plomo que se empleaba como aditivo corriente de la gasolina, como antidetonante (hoy prohibido en la mayoría de los países). Hoy día, el etanol para uso como combustible se produce casi exclusivamente en plantas construidas ad-hoc, evitando así cualquier remanente de plomo.


Economía

Dependencia del petróleo
Casi cualquier país con suficiente terreno en su territorio puede producir etanol para su uso como combustible. A diferencia del petróleo, que debe ser extraído de unos yacimientos no existentes en todas las regiones.

El etanol es pues una alternativa interesante, que puede incluso ayudar a mitigar las tensiones internacionales derivadas de la dependencia y adicción de algunos países por el petróleo. Aunque en realidad todo esto depende del balance energético (no del económico), ya que el cultivo y procesado de agro-combustibles se realiza actualmente con petróleo por el uso de agroquímicos y maquinaria, por lo que en el mejor de los casos el proceso equivale a un pequeño aumento del rendimiento energético del petróleo si el balance energético es positivo; pero en caso de incluir el ciclo de vida completo, incorporando por ejemplo la energía necesaria para producir y reparar la maquinaria agrícola y la usada en el proceso de destilación y fermentación, entonces hace aparición el balance negativo,

es decir, consume más energía fósil que la renovable que produce.





Biodiésel